Cospectral mates for generalized Johnson and Grassmann graphs

Robin Simoens

Ghent University \& Universitat Politècnica de Catalunya

30 January 2024

Joint work with Aida Abiad, Jozefien D’haeseleer and Willem H. Haemers

Cospectral mates

Figure: Saltire pair

Both graphs have spectrum $\{-2,0,0,0,2\}$.

Cospectral mates

Figure: Saltire pair

Both graphs have spectrum $\{-2,0,0,0,2\}$.

Cospectral mates

Definition

Graphs with the same spectrum are cospectral. Cospectral nonisomorphic graphs are cospectral mates.

Definition

A graph is determined by its spectrum (DS) if it has no cospectral mate. Otherwise, we it is not determined by its spectrum (NDS).

Cospectral mates

Conjecture (Haemers)

Almost all graphs are determined by their spectrum.

Cospectral mates

Conjecture (Haemers)
Almost all graphs are determined by their spectrum.

- Computational evidence (Brouwer and Spence, 2009)

Cospectral mates

Conjecture (Haemers)
Almost all graphs are determined by their spectrum.
> Computational evidence (Brouwer and Spence, 2009)
$>$ Interesting for complexity theory

Figure: Is graph isomorphism an easy problem? Is it NP-complete?

Cospectral mates

Conjecture (Haemers)
Almost all graphs are determined by their spectrum.
> Computational evidence (Brouwer and Spence, 2009)
> Interesting for complexity theory
> Interesting for chemistry

Figure: The molecular graph of acetaldehyde (ethanal).

How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:
$>C$ is regular.
> Every vertex outside C has $0, \frac{1}{2}|C|$ or $|C|$ neighbours in C.
For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ.

How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:
$>C$ is regular.
> Every vertex outside C has $0, \frac{1}{2}|C|$ or $|C|$ neighbours in C.
For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:
$>C$ is regular.
$>$ Every vertex outside C has $0, \frac{1}{2}|C|$ or $|C|$ neighbours in C.
For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ.

Proof.

$$
\left(\begin{array}{ll}
A_{11} & A_{12}^{\prime} \\
A_{21}^{\prime} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{|C|} J-I & O \\
O & I
\end{array}\right)^{T}\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{|C|} J-I & O \\
O & I
\end{array}\right)
$$

How to find cospectral graphs

How to find cospectral graphs

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_{1}, C_{2} such that:
$>\left|C_{1}\right|=\left|C_{2}\right|$.
> There is a constant c such that, for every vertex of C_{i}, the number of neighbours in C_{i} minus the number of neighbours in C_{j}, is c.
$>$ Every vertex outside $C_{1} \cup C_{2}$ has either:
10 neighbours in C_{1} and $\left|C_{2}\right|$ in C_{2},
$2\left|C_{1}\right|$ neighbours in C_{1} and 0 in C_{2},
3 equally many neighbours in C_{1} and C_{2}.
For every $v \notin C_{1} \cup C_{2}$ for which 1 or 2 holds, reverse its adjacencies with $C_{1} \cup C_{2}$. The resulting graph is cospectral with Γ.

How to find cospectral graphs

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_{1}, C_{2} such that:
$>\left|C_{1}\right|=\left|C_{2}\right|$.
> There is a constant c such that, for every vertex of C_{i}, the number of neighbours in C_{i} minus the number of neighbours in C_{j}, is c.
$>$ Every vertex outside $C_{1} \cup C_{2}$ has either:
10 neighbours in C_{1} and $\left|C_{2}\right|$ in C_{2},
$2\left|C_{1}\right|$ neighbours in C_{1} and 0 in C_{2},
3 equally many neighbours in C_{1} and C_{2}.
For every $v \notin C_{1} \cup C_{2}$ for which 1 or 2 holds, reverse its adjacencies with $C_{1} \cup C_{2}$. The resulting graph is cospectral with Γ.

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Johnson graph $J_{S}(n, k)$ has as vertices the k-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if their intersection size is in S.

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Johnson graph $J_{S}(n, k)$ has as vertices the k-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if their intersection size is in S.
$>J_{\{0\}}(n, k)$ is the Kneser graph $K(n, k)$.

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Johnson graph $J_{S}(n, k)$ has as vertices the k-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if their intersection size is in S.
$>J_{\{0\}}(n, k)$ is the Kneser graph $K(n, k)$.
$>J_{\{k-1\}}(n, k)$ is the Johnson graph $J(n, k) . \quad\{1,2\}$

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Grassmann graph $J_{q, S}(n, k)$ has as vertices the k-subspaces of \mathbb{F}_{q}^{n}, where two vertices are adjacent if their intersection dimension is in S.

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Grassmann graph $J_{q, S}(n, k)$ has as vertices the k-subspaces of \mathbb{F}_{q}^{n}, where two vertices are adjacent if their intersection dimension is in S.
$>J_{q,\{0\}}(n, k)$ is the q-Kneser graph $K_{q}(n, k)$.

Which graphs did we check?

Definition

Let $S \subseteq\{0,1, \ldots, k-1\}$. The generalized Grassmann graph $J_{q, S}(n, k)$ has as vertices the k-subspaces of \mathbb{F}_{q}^{n}, where two vertices are adjacent if their intersection dimension is in S.
$>J_{q,\{0\}}(n, k)$ is the q-Kneser graph $K_{q}(n, k)$.
$>J_{q,\{k-1\}}(n, k)$ is the Grassmann graph $J_{q}(n, k)$.

What is known?

$J_{S}(n, 2)$		S
		\{0\}
n	4	DS
	5	DS
	6	DS
	7	DS
	8	NDS
	9	DS

$J_{S}(n, 3)$	S			
	$\{0\}$	$\{1\}$	$\{2\}$	
n	6	DS	NDS	NDS
	7	DS	NDS	NDS
	8	NDS	NDS	NDS
	9	$?$	NDS	NDS
	10	NDS	NDS	
	11	NDS	NDS	

Legend:

Trivial Hoffman/C

Huang, Liu (1999)
Haemers, Ramezani (2010)

What is known?

$J_{S}(n, 4)$		S						
		\{0\}	\{1\}	\{2\}	\{3\}	$\{0,1\}$	$\{0,2\}$	$\{0,3\}$
n	8	DS	?	?	NDS	?	NDS	?
	9	DS	?	?	NDS	NDS	NDS	?
	10	?	?	?	NDS	?	NDS	?
	11	NDS	?	?	NDS	?	NDS	?
	12	?	?	?	NDS	?	NDS	?
	13	?	?	?	NDS	?	NDS	?

Legend:
Trivial Huang, Liu (1999)
Haemers, Ramezani (2010)
Van Dam et al. (2006)
Cioabă et al. (2018)

What is known?

$J_{S}(n, 4)$		S						
		\{0\}	\{1\}	\{2\}	\{3\}	$\{0,1\}$	\{0, 2\}	$\{0,3\}$
n	8	DS	?	NDS	NDS	?	NDS	?
	9	DS	?	NDS	NDS	NDS	NDS	?
	10	?	?	NDS	NDS	?	NDS	?
	11	NDS	NDS	NDS	NDS	?	NDS	?
	12	?	?	NDS	NDS	?	NDS	?
	13	?	?	NDS	NDS	?	NDS	?

Legend:

Trivial Huang, Liu (1999)
Haemers, Ramezani (2010)
New result: $J_{\{2\}}(n, 4)$ is NDS

Van Dam et al. (2006)
Cioabă et al. (2018)
Sporadic result

$J_{q, S}(n, 2)$		$q=2$	$q=3$	$q=4$
		$S=\{0\}$	$S=\{0\}$	$S=\{0\}$
n	4	NDS	NDS	NDS
	5	NDS	NDS	NDS
	6	NDS	NDS	NDS
	7	NDS	NDS	NDS
	8	NDS	NDS	NDS
	9	NDS	NDS	NDS

Legend: Van Dam, Koolen (2005)
Ihringer, Munemasa (2019)

What is known?

$J_{q, S}(n, 3)$		$q=2$			$q=3$			$q=4$		
		S			S			S		
		\{0\}	\{1\}	\{2\}	\{0\}	\{1\}	\{2\}	\{0\}	\{1\}	\{2\}
n	6	?	?	NDS	?	?	NDS	?	?	NDS
	7	?	?	NDS	?	?	NDS	?	?	NDS
	8	?	?	NDS	?	?	NDS	?	?	NDS
	9	?	?	NDS	?	?	NDS	?	?	NDS
	10	?	?	NDS	?	?	NDS	?	?	NDS
	11	?	?	NDS	?	?	NDS	?	?	NDS

Legend: Van Dam et al. (2006)

What is known?

$J_{q, S}(n, 3)$		$q=2$			$q=3$			$q=4$		
		S			S			S		
		\{0\}	\{1\}	\{2\}	\{0\}	\{1\}	\{2\}	\{0\}	\{1\}	\{2\}
n	6	NDS	?	NDS	?	?	NDS	?	?	NDS
	7	NDS	?	NDS	?	?	NDS	?	?	NDS
	8	NDS	?	NDS	?	?	NDS	?	?	NDS
	9	NDS	?	NDS	?	?	NDS	?	?	NDS
	10	NDS	?	NDS	?	?	NDS	?	?	NDS
	11	NDS	?	NDS	?	?	NDS	?	?	NDS

Legend:
Van Dam et al. (2006)
New result: $K_{2}(n, k)$ is NDS

Three new results

瞼
GHENT
UNIVERSITY

Theorem
 $J_{\{2\}}(n, 4)$ is $N D S$ if $n \geq 8$.

Theorem
$J_{\left\{1,2, \ldots \frac{k-1}{2}\right\}}(2 k, k)$ is NDS if $k \geq 5, k$ odd.
Theorem
$K_{2}(n, k)$ is NDS.

Three new results

Theorem
 $J_{\{2\}}(n, 4)$ is $N D S$ if $n \geq 8$.

Three new results

Theorem

$J_{\{2\}}(n, 4)$ is $N D S$ if $n \geq 8$.
> WQH-switching

Three new results

Theorem

$J_{\{2\}}(n, 4)$ is $N D S$ if $n \geq 8$.
> WQH-switching

$>J_{\{2\}}(n, 4)$ is edge-regular, the new graph is not

Three new results

Theorem
 $J_{\left\{1,2, \ldots \frac{k-1}{2}\right\}}(2 k, k)$ is NDS if $k \geq 5, k$ odd.

Three new results

Theorem

$J_{\left\{1,2, \ldots \frac{k-1}{2}\right\}}(2 k, k)$ is NDS if $k \geq 5, k$ odd.

$$
>\binom{2 k}{k}=\binom{2 k-1}{k-1}+\binom{2 k-1}{k}=2\binom{2 k-1}{k-1}
$$

Three new results

Theorem

$J_{\left\{1,2, \ldots \frac{k-1}{2}\right\}}(2 k, k)$ is NDS if $k \geq 5, k$ odd.
$>\binom{2 k}{k}=\binom{2 k-1}{k-1}+\binom{2 k-1}{k}=2\binom{2 k-1}{k-1}$

Theorem (Cioabă et al. (2018))
$J_{\left\{0,1, \ldots, \frac{k-3}{2}\right\}}(2 k-1, k-1)$ is NDS if $k \geq 5, k$ odd.

Three new results

$$
\begin{array}{r}
J_{\{1\}}(6,3) \text { has vertices }\{1,2,3\},\{1,2,4\}, \ldots,\{1,4,6\},\{1,5,6\}, \\
\\
\{4,5,6\},\{3,5,6\}, \ldots,\{2,3,5\},\{2,3,4\}
\end{array}
$$

Three new results

$$
\begin{array}{r}
J_{\{1\}}(6,3) \text { has vertices }\{1,2,3\},\{1,2,4\}, \ldots,\{1,4,6\},\{1,5,6\}, \\
\\
\{4,5,6\},\{3,5,6\}, \ldots,\{2,3,5\},\{2,3,4\}
\end{array}
$$

$>$ adjacency matrix $A=\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Three new results

$J_{\{1\}}(6,3)$ has vertices $\{1,2,3\},\{1,2,4\}, \ldots,\{1,4,6\},\{1,5,6\}$, $\{4,5,6\},\{3,5,6\}, \ldots,\{2,3,5\},\{2,3,4\}$
$>$ adjacency matrix $A=\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Three new results

$J_{\{1\}}(6,3)$ has vertices $\{1,2,3\},\{1,2,4\}, \ldots,\{1,4,6\},\{1,5,6\}$,

$$
\{4,5,6\},\{3,5,6\}, \ldots,\{2,3,5\},\{2,3,4\}
$$

$>$ adjacency matrix $A=\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Three new results

GHENT
UNIVERSITY

Theorem
 $K_{2}(n, k)$ is NDS.

Three new results

Theorem

$K_{2}(n, k)$ is NDS.

$>\mathrm{GM}$-switching set $C:=\left\{p_{1} p_{2} \pi, p_{1} p_{3} \pi, p_{2} p_{3} \pi, p_{4} p_{5} \pi\right\}$

Three new results

Theorem

$K_{2}(n, k)$ is $N D S$.

$>$ GM-switching set $C:=\left\{p_{1} p_{2} \pi, p_{1} p_{3} \pi, p_{2} p_{3} \pi, p_{4} p_{5} \pi\right\}$

Three new results

Theorem

$K_{2}(n, k)$ is NDS.

$>$ GM-switching set $C:=\left\{p_{1} p_{2} \pi, p_{1} p_{3} \pi, p_{2} p_{3} \pi, p_{4} p_{5} \pi\right\}$

Three new results

Theorem

$K_{2}(n, k)$ is NDS.

$>$ GM-switching set $C:=\left\{p_{1} p_{2} \pi, p_{1} p_{3} \pi, p_{2} p_{3} \pi, p_{4} p_{5} \pi\right\}$

Three new results

Theorem

$K_{2}(n, k)$ is NDS.

$>\mathrm{GM}$-switching set $C:=\left\{p_{1} p_{2} \pi, p_{1} p_{3} \pi, p_{2} p_{3} \pi, p_{4} p_{5} \pi\right\}$

Further research

$>$ GM-switching, WQH-switching, AH-switching

Further research

$>$ GM-switching, WQH-switching, AH-switching
$>$ Computer results:

Theorem

The following graphs are NDS:
$>J_{\{1\}}(11,4)$,
$>J_{\{2,4\}}(10,5)$,
$>J_{\{2,4\}}(12,6)$.
can they be extended to infinite families?

Thank you for listening!

