

Cospectral mates for generalized Johnson and Grassmann graphs

Robin Simoens

Ghent University & Universitat Politècnica de Catalunya

30 January 2024

Joint work with Aida Abiad, Jozefien D'haeseleer and Willem H. Haemers

Figure: Saltire pair

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Figure: Saltire pair

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Definition

Graphs with the same spectrum are **cospectral**. Cospectral nonisomorphic graphs are **cospectral mates**.

Definition

A graph is **determined by its spectrum (DS)** if it has no cospectral mate. Otherwise, we it is **not determined by its spectrum (NDS)**.

Almost all graphs are determined by their spectrum.

Almost all graphs are determined by their spectrum.

Computational evidence (Brouwer and Spence, 2009)

Almost all graphs are determined by their spectrum.

- Computational evidence (Brouwer and Spence, 2009)
- Interesting for complexity theory

Figure: Is graph isomorphism an easy problem? Is it NP-complete?

Almost all graphs are determined by their spectrum.

- Computational evidence (Brouwer and Spence, 2009)
- Interesting for complexity theory
- Interesting for chemistry

Figure: The molecular graph of acetaldehyde (ethanal).

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

➤ C is regular.

► Every vertex outside C has $0, \frac{1}{2}|C|$ or |C| neighbours in C. For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

➤ C is regular.

► Every vertex outside C has $0, \frac{1}{2}|C|$ or |C| neighbours in C. For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \succ C is regular.

For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ or |C| neighbours in C. For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its

adjacencies with C. The resulting graph is cospectral with Γ .

Proof.

$$\begin{pmatrix} A_{11} & A_{12}' \\ A_{21}' & A_{22} \end{pmatrix} = \begin{pmatrix} \frac{2}{|C|}J - I & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \frac{2}{|C|}J - I & O \\ O & I \end{pmatrix}$$

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

- ► $|C_1| = |C_2|.$
- > There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.

 \blacktriangleright Every vertex outside $C_1 \cup C_2$ has either:

- 1 0 neighbours in C_1 and $|C_2|$ in C_2 ,
- **2** $|C_1|$ neighbours in C_1 and 0 in C_2 ,
- 3 equally many neighbours in C_1 and C_2 .

For every $v \notin C_1 \cup C_2$ for which 1 or 2 holds, reverse its adjacencies with $C_1 \cup C_2$. The resulting graph is cospectral with Γ .

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

- ► $|C_1| = |C_2|.$
- > There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.

 \blacktriangleright Every vertex outside $C_1 \cup C_2$ has either:

- **1** 0 neighbours in C_1 and $|C_2|$ in C_2 ,
- **2** $|C_1|$ neighbours in C_1 and 0 in C_2 ,
- 3 equally many neighbours in C_1 and C_2 .

For every $v \notin C_1 \cup C_2$ for which 1 or 2 holds, reverse its adjacencies with $C_1 \cup C_2$. The resulting graph is cospectral with Γ .

Definition

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, ..., n\}$, where two vertices are adjacent if their intersection size is in S.

Definition

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, ..., n\}$, where two vertices are adjacent if their intersection size is in S.

Definition

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, ..., n\}$, where two vertices are adjacent if their intersection size is in S.

Definition

Let $S \subseteq \{0, 1, \dots, k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

Definition

Let $S \subseteq \{0, 1, \dots, k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

►
$$J_{q,\{0\}}(n,k)$$
 is the *q*-Kneser graph $K_q(n,k)$.

Definition

Let $S \subseteq \{0, 1, \ldots, k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

J_{q,{0}}(n, k) is the q-Kneser graph K_q(n, k).
 J_{q,{k-1}}(n, k) is the Grassmann graph J_q(n, k).

$J_S(n,2)$		S		$I_{-}(n, 2)$		S			
		{0}		JS(n, 3)		{0}	{1}	{2}	
	4	DS			6	DS	NDS	NDS	
	5	DS		n	7	DS	NDS	NDS	
	6	DS			8	NDS	NDS	NDS	
n	7	DS			9	?	NDS	NDS	
	8	NDS			10	?	NDS	NDS	
	9	DS			11	?	NDS	NDS	

Legend:TrivialHoffman/Chang (1959)Huang, Liu (1999)Van Dam et al. (2006)Haemers, Ramezani (2010)

$J_S(n,4)$		S									
		$\{0\}$	{1}	{2}	{3}	$\{0,1\}$	$\{0, 2\}$	$\{0,3\}$			
	8	DS	?	?	NDS	?	NDS	?			
	9	DS	?	?	NDS	NDS	NDS	?			
n	10	?	?	?	NDS	?	NDS	?			
11	11	NDS	?	?	NDS	?	NDS	?			
	12	?	?	?	NDS	?	NDS	?			
	13	?	?	?	NDS	?	NDS	?			

Legend:TrivialHuang, Liu (1999)Van Dam et al. (2006)Haemers, Ramezani (2010)Cioabă et al. (2018)

$J_S(n,4)$		S									
		$\{0\}$	{1}	$\{2\}$	{3}	$\{0,1\}$	$\{0, 2\}$	$\{0,3\}$			
	8	DS	?	NDS	NDS	?	NDS	?			
	9	DS	?	NDS	NDS	NDS	NDS	?			
n	10	?	?	NDS	NDS	?	NDS	?			
	11	NDS	NDS	NDS	NDS	?	NDS	?			
	12	?	?	NDS	NDS	?	NDS	?			
	13	?	?	NDS	NDS	?	NDS	?			

Legend:TrivialHuang, Liu (1999)Van Dam et al. (2006)Haemers, Ramezani (2010)Cioabă et al. (2018)New result $J_{\{2\}}(n,4)$ is NDSSporadic result

$J_{q,S}(n,2)$		q = 2	q = 3	q = 4
		$S = \{0\}$	$S = \{0\}$	$S = \{0\}$
	4	NDS	NDS	NDS
	5	NDS	NDS	NDS
n	6	NDS	NDS	NDS
\mathcal{H}	7	NDS	NDS	NDS
	8	NDS	NDS	NDS
	9	NDS	NDS	NDS

Legend:

Van Dam, Koolen (2005)

Ihringer, Munemasa (2019)

$J_{q,S}(n,3)$		q = 2				q = 3		q = 4		
		S				S		S		
		{0}	{1}	$\{2\}$	{0}	{1}	$\{2\}$	{0}	{1}	{2}
	6	?	?	NDS	?	?	NDS	?	?	NDS
	7	?	?	NDS	?	?	NDS	?	?	NDS
	8	?	?	NDS	?	?	NDS	?	?	NDS
	9	?	?	NDS	?	?	NDS	?	?	NDS
	10	?	?	NDS	?	?	NDS	?	?	NDS
	11	?	?	NDS	?	?	NDS	?	?	NDS

Legend:

Van Dam et al. (2006)

$J_{q,S}(n,3)$		q = 2				q = 3		q = 4		
		S				S		S		
		{0}	{1}	$\{2\}$	{0}	{1}	$\{2\}$	{0}	{1}	$\{2\}$
	6	NDS	?	NDS	?	?	NDS	?	?	NDS
	7	NDS	?	NDS	?	?	NDS	?	?	NDS
m	8	NDS	?	NDS	?	?	NDS	?	?	NDS
	9	NDS	?	NDS	?	?	NDS	?	?	NDS
	10	NDS	?	NDS	?	?	NDS	?	?	NDS
	11	NDS	?	NDS	?	?	NDS	?	?	NDS

Legend:

Van Dam et al. (2006)

New result: $K_2(n,k)$ is NDS

$$J_{\{2\}}(n,4)$$
 is NDS if $n \ge 8$.

Theorem

$$J_{\{1,2,\ldots \frac{k-1}{2}\}}(2k,k)$$
 is NDS if $k \ge 5$, k odd.

Theorem

 $K_2(n,k)$ is NDS.

Three new results

Theorem

 $J_{\{2\}}(n,4)$ is NDS if $n \ge 8$.

Three new results

Theorem

$$J_{\{2\}}(n,4)$$
 is NDS if $n \ge 8$.

► WQH-switching

Three new results

Theorem

$$J_{\{2\}}(n,4)$$
 is NDS if $n \ge 8$.

► WQH-switching

▶ $J_{\{2\}}(n,4)$ is edge-regular, the new graph is not

$$J_{\{1,2,\ldots\frac{k-1}{2}\}}(2k,k)$$
 is NDS if $k\geq 5, k$ odd.

$$J_{\{1,2,\ldots\frac{k-1}{2}\}}(2k,k)$$
 is NDS if $k\geq 5, k \text{ odd}$

$$\blacktriangleright \binom{2k}{k} = \binom{2k-1}{k-1} + \binom{2k-1}{k} = 2\binom{2k-1}{k-1}$$

 \wedge

Theorem

$$J_{\{1,2,\ldots\frac{k-1}{2}\}}(2k,k)$$
 is NDS if $k\geq 5, k \text{ odd}$

Theorem (Cioabă et al. (2018))

$$J_{\{0,1,\ldots,\frac{k-3}{2}\}}(2k-1,k-1)$$
 is NDS if $k\geq 5,\,k$ odd.

$$\begin{split} J_{\{1\}}(6,3) \text{ has vertices } \{1,2,3\}, \{1,2,4\}, \dots, \{1,4,6\}, \{1,5,6\}, \\ \{4,5,6\}, \{3,5,6\}, \dots, \{2,3,5\}, \{2,3,4\} \end{split}$$

$$J_{\{1\}}(6,3) \text{ has vertices } \{1,2,3\}, \{1,2,4\}, \dots, \{1,4,6\}, \{1,5,6\}, \{4,5,6\}, \{3,5,6\}, \dots, \{2,3,5\}, \{2,3,4\}$$

$$\bullet \text{ adjacency matrix } A = \begin{pmatrix} P & \bar{P} \\ \bar{P} & P \end{pmatrix}$$

$$\{1,2,3\}$$

$$\{1,4,6\}$$

$$\{1,2,6\}$$

$$\{1,3,6\}$$

$$\{1,3,6\}$$

$$\{1,3,6\}$$

$$\{1,3,6\}$$

$$\{2,4,6\}$$

$$\{2,4,6\}$$

$$\{3,4,6\}$$

$$\{3,4,6\}$$

$$\{2,4,6\}$$

$$\{3,5,6\}$$

17/20

$$J_{\{1\}}(6,3) \text{ has vertices } \{1,2,3\}, \{1,2,4\}, \dots, \{1,4,6\}, \{1,5,6\}, \{4,5,6\}, \{3,5,6\}, \dots, \{2,3,5\}, \{2,3,4\}$$

$$\blacktriangleright \text{ adjacency matrix } A = \begin{pmatrix} P & \bar{P} \\ \bar{P} & P \end{pmatrix}$$

$$\begin{pmatrix} 1,2,3 \\ 1,2,6 \\ 1,2,6 \\ 1,3,6 \\ 1,3,6 \\ 1,3,6 \\ 1,2,4$$

 $K_2(n,k)$ is NDS.

 $K_2(n,k)$ is NDS.

• GM-switching set $C := \{ p_1 p_2 \pi, p_1 p_3 \pi, p_2 p_3 \pi, p_4 p_5 \pi \}$

• GM-switching set $C := \{ p_1 p_2 \pi, p_1 p_3 \pi, p_2 p_3 \pi, p_4 p_5 \pi \}$

 $\blacktriangleright \text{ GM-switching set } C := \{p_1 p_2 \pi, p_1 p_3 \pi, p_2 p_3 \pi, p_4 p_5 \pi\}$

 $\blacktriangleright \text{ GM-switching set } C := \{p_1 p_2 \pi, p_1 p_3 \pi, p_2 p_3 \pi, p_4 p_5 \pi\}$

 $\blacktriangleright \text{ GM-switching set } C := \{p_1 p_2 \pi, p_1 p_3 \pi, p_2 p_3 \pi, p_4 p_5 \pi\}$

➤ GM-switching, WQH-switching, AH-switching

► GM-switching, WQH-switching, AH-switching

Computer results:

Theorem

The following graphs are NDS:

►
$$J_{\{1\}}(11,4)$$
,

►
$$J_{\{2,4\}}(10,5)$$
,

►
$$J_{\{2,4\}}(12,6).$$

can they be extended to infinite families?

Thank you for listening!

