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Cospectral mates

Figure: Saltire pair

Both graphs have spectrum {−2, 0, 0, 0, 2}.
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Cospectral mates

Definition

Graphs with the same spectrum are cospectral.
Cospectral nonisomorphic graphs are cospectral mates.

Definition

A graph is determined by its spectrum (DS) if it has no cospectral
mate. Otherwise, we it is not determined by its spectrum (NDS).
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Cospectral mates

Conjecture (Haemers)

Almost all graphs are determined by their spectrum.

➤ Computational evidence (Brouwer and Spence, 2009)
➤ Interesting for complexity theory
➤ Interesting for chemistry
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Figure: Is graph isomorphism an easy problem? Is it NP-complete?

➤ Interesting for chemistry
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Conjecture (Haemers)

Almost all graphs are determined by their spectrum.
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➤ Interesting for complexity theory
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Figure: The molecular graph of acetaldehyde (ethanal).
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

➤ C is regular.

➤ Every vertex outside C has 0, 12 |C| or |C| neighbours in C .

For every v /∈ C that has exactly 1
2 |C| neighbours in C , reverse its

adjacencies with C . The resulting graph is cospectral with Γ.

C

C

Proof.(
A11 A′

12

A′
21 A22

)
=

( 2
|C|J − I O

O I

)T (
A11 A12

A21 A22

)( 2
|C|J − I O

O I

)
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How to find cospectral graphs
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How to find cospectral graphs

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C1, C2 such that:

➤ |C1| = |C2|.
➤ There is a constant c such that, for every vertex of Ci, the number of neighbours

in Ci minus the number of neighbours in Cj , is c.

➤ Every vertex outside C1 ∪ C2 has either:

1 0 neighbours in C1 and |C2| in C2,
2 |C1| neighbours in C1 and 0 in C2,
3 equally many neighbours in C1 and C2.

For every v /∈ C1 ∪ C2 for which 1 or 2 holds, reverse its adjacencies with C1 ∪ C2.
The resulting graph is cospectral with Γ.

C2C1

C2C1
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Which graphs did we check?

Definition

Let S ⊆ {0, 1, . . . , k − 1}. The generalized Johnson graph JS(n, k)
has as vertices the k-subsets of {1, . . . , n}, where two vertices are
adjacent if their intersection size is in S.

➤ J{0}(n, k) is the Kneser graphK(n, k).
➤ J{k−1}(n, k) is the Johnson graph J(n, k).

{1, 2}

{1, 3}

{2, 3}

{3, 4}

{2, 4}

{1, 4}

{1, 2}

{3, 4}

{2, 5} {1, 3}

{4, 5}
{3, 5}

{1, 5}

{1, 4}

{2, 4}

{2, 3}
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Which graphs did we check?

Definition

Let S ⊆ {0, 1, . . . , k − 1}. The generalized Grassmann graph
Jq,S(n, k) has as vertices the k-subspaces of Fn

q , where two vertices
are adjacent if their intersection dimension is in S.

➤ Jq,{0}(n, k) is the q-Kneser graphKq(n, k).
➤ Jq,{k−1}(n, k) is the Grassmann graph Jq(n, k).

(1, 1)

(1, 0)

(0, 1)
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What is known?

JS(n, 2)
S
{0}

n

4 DS
5 DS
6 DS
7 DS
8 NDS
9 DS

JS(n, 3)
S

{0} {1} {2}

n

6 DS NDS NDS
7 DS NDS NDS
8 NDS NDS NDS
9 ? NDS NDS
10 ? NDS NDS
11 ? NDS NDS

Legend: Trivial Hoffman/Chang (1959) Huang, Liu (1999)

Van Dam et al. (2006) Haemers, Ramezani (2010)
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What is known?

JS(n, 4)
S

{0} {1} {2} {3} {0, 1} {0, 2} {0, 3}

n

8 DS ? ? NDS ? NDS ?
9 DS ? ? NDS NDS NDS ?
10 ? ? ? NDS ? NDS ?
11 NDS ? ? NDS ? NDS ?
12 ? ? ? NDS ? NDS ?
13 ? ? ? NDS ? NDS ?

Legend: Trivial Huang, Liu (1999) Van Dam et al. (2006)

Haemers, Ramezani (2010) Cioabă et al. (2018)

New result: J{2}(n, 4) is NDS Sporadic result
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What is known?

Jq,S(n, 2)
q = 2 q = 3 q = 4
S={0} S={0} S={0}

n

4 NDS NDS NDS
5 NDS NDS NDS
6 NDS NDS NDS
7 NDS NDS NDS
8 NDS NDS NDS
9 NDS NDS NDS

Legend: Van Dam, Koolen (2005) Ihringer, Munemasa (2019)
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What is known?

Jq,S(n, 3)
q = 2 q = 3 q = 4
S S S

{0} {1} {2} {0} {1} {2} {0} {1} {2}

n

6 ? ? NDS ? ? NDS ? ? NDS
7 ? ? NDS ? ? NDS ? ? NDS
8 ? ? NDS ? ? NDS ? ? NDS
9 ? ? NDS ? ? NDS ? ? NDS
10 ? ? NDS ? ? NDS ? ? NDS
11 ? ? NDS ? ? NDS ? ? NDS

Legend: Van Dam et al. (2006)

New result: K2(n, k) is NDS
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Three new results

Theorem

J{2}(n, 4) is NDS if n ≥ 8.

Theorem

J{1,2,... k−1
2

}(2k, k) is NDS if k ≥ 5, k odd.

Theorem

K2(n, k) is NDS.



15/20

Three new results

Theorem

J{2}(n, 4) is NDS if n ≥ 8.

➤ WQH-switching

{1,2,3,4}

{1,2,3,5}

{1,2,3,6}

{1,4,5,6}

{2,4,5,6}

{3,4,5,6}

C1 C2

➤ J{2}(n, 4) is edge-regular, the new graph is not



15/20

Three new results

Theorem

J{2}(n, 4) is NDS if n ≥ 8.

➤ WQH-switching

{1,2,3,4}

{1,2,3,5}

{1,2,3,6}

{1,4,5,6}

{2,4,5,6}

{3,4,5,6}

C1 C2

➤ J{2}(n, 4) is edge-regular, the new graph is not



15/20

Three new results

Theorem

J{2}(n, 4) is NDS if n ≥ 8.

➤ WQH-switching

{1,2,3,4}

{1,2,3,5}

{1,2,3,6}

{1,4,5,6}

{2,4,5,6}

{3,4,5,6}

C1 C2

➤ J{2}(n, 4) is edge-regular, the new graph is not



16/20

Three new results

Theorem

J{1,2,... k−1
2

}(2k, k) is NDS if k ≥ 5, k odd.

➤
(
2k
k

)
=

(
2k−1
k−1

)
+
(
2k−1
k

)
= 2

(
2k−1
k−1

)

➤ adjacency matrix A =

(
A′ Ā′

Ā′ A′

)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Theorem (Cioabă et al. (2018))
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Three new results

J{1}(6, 3) has vertices {1, 2, 3}, {1, 2, 4}, . . . , {1, 4, 6}, {1, 5, 6},
{4, 5, 6}, {3, 5, 6}, . . . , {2, 3, 5}, {2, 3, 4}

➤ adjacency matrix A =

(
P P̄
P̄ P

)
{1,2,3}

{1,4,5}

{1,3,6} {1,2,4}

{1,5,6}
{1,4,6}
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{4,5,6}

{2,3,6}

{2,4,5} {3,5,6}
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{3,4,5}

{3,4,6}

{2,4,6}

{2,5,6}
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Three new results

Theorem

K2(n, k) is NDS.

p5p4

p6 p3

p1

p2

π

[k − 2]

➤ GM-switching set C := {p1p2π, p1p3π, p2p3π, p4p5π}
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Further research

➤ GM-switching, WQH-switching, AH-switching

➤ Computer results:

Theorem

The following graphs are NDS:

➤ J{1}(11, 4),

➤ J{2,4}(10, 5),

➤ J{2,4}(12, 6).

can they be extended to infinite families?
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Thank you for listening!
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